l

leastMedSquared

Implements a least median squared linear regression utilizing the existing weka LinearRegression class to form predictions. Least squared regression functions are generated from random subsamples of the data. The least squared regression with the lowest meadian squared error is chosen as the final model. The basis of the algorithm is Peter J. Rousseeuw, Annick M. Leroy (1987). Robust regression and outlier detection.
http://weka.sourceforge.net/doc.packages/leastMedSquared
GNU General Public License 3
University of Waikato, Hamilton, NZ
Tony Voyle
Files download
File Operation
leastMedSquared-1.0.2.jar download
leastMedSquared-1.0.2.pom download
leastMedSquared-1.0.2-sources.jar download
Apache Maven
<dependency>
  <groupId>nz.ac.waikato.cms.weka</groupId>
  <artifactId>leastMedSquared</artifactId>
  <version>1.0.2</version>
</dependency>
Gradle Groovy
implementation 'nz.ac.waikato.cms.weka:leastMedSquared:1.0.2'
Gradle Kotlin
implementation("nz.ac.waikato.cms.weka:leastMedSquared:1.0.2")
Scala SBT
libraryDependencies += "nz.ac.waikato.cms.weka" % "leastMedSquared" % "1.0.2"
Groovy Grape
@Grapes(
  @Grab(group='nz.ac.waikato.cms.weka', module='leastMedSquared', version='1.0.2')
)
Apache Ivy
<dependency org="nz.ac.waikato.cms.weka" name="leastMedSquared" rev="1.0.2" />
Leiningen
[nz.ac.waikato.cms.weka/leastMedSquared "1.0.2"]
Apache Buildr
'nz.ac.waikato.cms.weka:leastMedSquared:jar:1.0.2'