e

extraTrees

Package for generating a single Extra-Tree. Use with the RandomCommittee meta classifier to generate an Extra-Trees forest for classification or regression. This classifier requires all predictors to be numeric. Missing values are not allowed. Instance weights are taken into account. For more information, see Pierre Geurts, Damien Ernst, Louis Wehenkel (2006). Extremely randomized trees. Machine Learning. 63(1):3-42.
http://weka.sourceforge.net/doc.packages/extraTrees
GNU General Public License 3
University of Waikato, Hamilton, NZ
Eibe Frank
文件下载
文件名 操作
extraTrees-1.0.1.jar 下载
extraTrees-1.0.1.pom 下载
extraTrees-1.0.1-sources.jar 下载
Apache Maven
<dependency>
  <groupId>nz.ac.waikato.cms.weka</groupId>
  <artifactId>extraTrees</artifactId>
  <version>1.0.1</version>
</dependency>
Gradle Groovy
implementation 'nz.ac.waikato.cms.weka:extraTrees:1.0.1'
Gradle Kotlin
implementation("nz.ac.waikato.cms.weka:extraTrees:1.0.1")
Scala SBT
libraryDependencies += "nz.ac.waikato.cms.weka" % "extraTrees" % "1.0.1"
Groovy Grape
@Grapes(
  @Grab(group='nz.ac.waikato.cms.weka', module='extraTrees', version='1.0.1')
)
Apache Ivy
<dependency org="nz.ac.waikato.cms.weka" name="extraTrees" rev="1.0.1" />
Leiningen
[nz.ac.waikato.cms.weka/extraTrees "1.0.1"]
Apache Buildr
'nz.ac.waikato.cms.weka:extraTrees:jar:1.0.1'