p

paceRegression

Class for building pace regression linear models and using them for prediction. Under regularity conditions, pace regression is provably optimal when the number of coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under certain conditions. The current work of the pace regression theory, and therefore also this implementation, do not handle: - missing values - non-binary nominal attributes - the case that n - k is small where n is the number of instances and k is the number of coefficients (the threshold used in this implmentation is 20) For more information see: Wang, Y (2000). A new approach to fitting linear models in high dimensional spaces. Hamilton, New Zealand. Wang, Y., Witten, I. H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning, Sydney, Australia, 650-657, 2002.
http://weka.sourceforge.net/doc.packages/paceRegression
GNU General Public License 3
University of Waikato, Hamilton, NZ
Yong Wang
Files download
File Operation
paceRegression-1.0.1.jar download
paceRegression-1.0.1.pom download
paceRegression-1.0.1-sources.jar download
Apache Maven
<dependency>
  <groupId>nz.ac.waikato.cms.weka</groupId>
  <artifactId>paceRegression</artifactId>
  <version>1.0.1</version>
</dependency>
Gradle Groovy
implementation 'nz.ac.waikato.cms.weka:paceRegression:1.0.1'
Gradle Kotlin
implementation("nz.ac.waikato.cms.weka:paceRegression:1.0.1")
Scala SBT
libraryDependencies += "nz.ac.waikato.cms.weka" % "paceRegression" % "1.0.1"
Groovy Grape
@Grapes(
  @Grab(group='nz.ac.waikato.cms.weka', module='paceRegression', version='1.0.1')
)
Apache Ivy
<dependency org="nz.ac.waikato.cms.weka" name="paceRegression" rev="1.0.1" />
Leiningen
[nz.ac.waikato.cms.weka/paceRegression "1.0.1"]
Apache Buildr
'nz.ac.waikato.cms.weka:paceRegression:jar:1.0.1'